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ABSTRACT

Based on the theory of continued fractions, a technique
is developed for the reduction of high order multivariable
systems. The mathematical basis for which these techniques
work is elucidated, and its superiority of the mixed form
over any other form of continued fractions is established.
The general solution to linear regulator problem is developed

and the properties which this solution exhibit are elucidated.
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I. INTRODUCTION

! The capability of obtaining simplified mathematical
models for use in the analysis of high order dynamic systems
has traditionally relied on the experience and ingenuity of
the analyst. Usually, these efforts have been achieved
using both freguency and time domain techniques.

Tn dealing with the problem stated above, and through
the use of theory of continued fraction, this research has
found a series of properties applicable to reduction of

multivariable systems, lower order observers and derivations

of lower order systems for the linear regulator problem.

The relationships developed, show applications in areas
where the high order systems are impractical or undesirable
to use due to their complexity or difficulty of implementation.

In Chapter II reduced order models of multivariable

/ systems for the first, second and mixed Cauer forms are

developed. Techniques for approximating a high order linear

i time-invariant system with various inputs and various outputs
f by a reduced order model, have been suggested by Chen [1],

Meier, L and Luenberger [2], L. S. Shieh and Y. J Wei [3],

4

M. R. Calfe and M. Healey [4], L. S. Shieh, J. M. Navarro
and R. Yates [5], D. A. Wilson {61, L. S. Shieh and F. F.

v Gaudiano [7].




-

Most of these methods for reducing high order linear

systems are based on the following principles:

l. The low performance terms can be discarded and the
high performance terms should be retained.

2. Linear transformation to obtain matrix diagonaliza-
tion where certain diagonal elements can be dis-
carded.

3. The sum of squares of the errors betwacn the
responses of the real system and those of the
approximate model at the sampling instant is
minimized in order to obtain the parameters of the
approximate model.

In a recent paper, Chen [1] proposed a reduction of
multivariable control systems by means of matrix second
Cauer form of continued fractions. Through the method, a
simplified model is obtained by keeping the first several
significant matrix quotients and discarding the others.
However, the technique (due to the nature of the Cauer
second form), provides satisfactory results in the steady
state region only. TFurthermore, M. R. Calfe and M. Healey
(4], have shown that the method does. not guarantee the
reduced medel to be stable.

In Chapter III derivation of lower order system for the
linear regulator problem via Cauer form is obtained and

also a near optimal solution for the original system can be

found through a reduced system.




II. MULTIVARIABLE SYSTEMS REDUCTION VIA THE CAUER FORM |

A. THREE MATRIX CAUER FORMS

L.S. Shieh and F.F. Gaudianc [7] have shown that in terms

of multivariable systems the quotients in the three Cauer
forms are replaced by matrix quotients and the division in
the continued fraction is replaced by matrix inversion. The
first matrix Cauer form is

T(s) = [H}s + [H) + [Hys + () + [...070701707 07
the second matrix Cauer form is

T(s) = [H] + (4,0 + [y + A, + [L..17017007 07t (o

1 LUs

and the mixed matrix Cauer form 1is

1 1
T(s) = + K! K= + X! s + K =
(s) [Kl :<ls+[1<25+~\2+[}<3+1<33 Ky,3
- - -]l - -
: R SUUE b b ek B (3)
. where Hi, Hl, Kl’ and K& are constant m X m matrix quotients
) obtained respectively from the matrix Routh's array and the
\ generalized Routh's algorithm shown in equations (4a) and

) (4b).
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An—l,l An-l,2"'An—l,3
- ~1 _ -1
Kn-1*#n-10 n11 <:: Kn-17An-1,3%0-2
An,l An,2
K _=A_, 1A} >K'=A £,
“n""n’ n+l,l n n,2 n+l,l
An+l,l

(4b)

where the elements of the first and second rows of equations
(4+a) and (4b) are the matrix coefficients of the system

given in equation (5).

T(s) = [A,,n sh=1 4 A n-1572 2

2 +...A23S

+ AZZS + AZl]x

(5)
n n-1 2 -1
[Al,n+1s + Al,nS +...Al3s + AIZS + Alll

The elements of the third, fourth and subsequent rows in (ua)
and (4b) are evaluated respectively for the three Cauer forms

by the formulation shown in (6a) through (6c).

Hp = Ap,n+2-p§§'+1,l p=1,2,3,...n

3,4,...2n

'
Aj,i = Aj-2, i+l - Hj-2 A3-1,1 ]

det Ap+l,1 # 0 i=n+l, n, n-1,...1]

(6a)

13




b % e S -
- _’E-
) l"" -1
‘ Hp = Ap,lAp +1,1 p=1,2,3,...2n
Aj,i = Aj-2, i+l - Hj-2A3-1, i+l §=3,4,...2n (6b)
det Ap+l,1 # O i=1,2,3,...n
—
r%p = Ap,1 Aﬁkl,l p=1,2,3,...n
Kp = Ap, n+2 - p §§41, n+l-p j=3,4,...n+1
Aj,i = Aj-2, i+l - Kj-2Aj-1, i+1-K 3-2 Aj=1,i i=1,2,3,

(6¢c)

It is important to note that since the Cauer first and second
forms are special cases of the Cauer mixed form, their
formulation in (6a) and (6b) can be derived directly from
(6c), by letting all kp's or all Kb's equal to zero respec-

tively.

B. STATE SPACE FORMULATION FOR THREE CAUER FORMS
] i The Cauer Mixed Form - Consider a typical féedback system
} with a minor feed forward loop as shown in Figure 1. The

overall transfer function is given by:

_Y(s) _ -1
T(s) = Ty ° [G + FI[I + (G + F)HI] ~. (7)

Equation (7) can be rewritten as a mixed matrix of continued
‘ ‘ fractions

T(s)

(4 + (F + gl 1371, (8)




K, — a —
where
]

H = Kl + KlS

F = K2+ K, (9)
I = Identity Matrix

= F
. +
AN N\ TN — > Y(s)
U(s) = (X — G fi@&’ 7
oK

Figure 1. Feedback and Feedforward controls.

If the subsystem G is expanded again, equation (3) is obtained.
This equation can be represenfed by the block diagram shown

in Figure 2. Where a 2 inputs-2 outputs nth order system

is shown. Again, it is important to note that if all Ki's

g0 to zero in Figure 2 the block diagram representation of
Cauer matrix first form nth/2 order system as shown in

Figure 3 will automatically be obtained. In a similar

fashion if the k'i's go to zero, the block diagram represen-

tation of Cauer matrix second form nth/2 order system as

shown in Figure 4 is obtained.




U(s)

4
+

4
".@+
&
6‘,9‘:
_i

/
7<
JJ
35
:‘

SNl

Figure 2. General Matrix representation of a nth order system by
f Cauer mixed form with two inputs two outputs. (n even)
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Figure 3. Matrix representation of a nth/2 order system by Cauer
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(n even)

th/2 order system by Cauer

second form with two inputs two outputs.
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Matrix representation of a n

Figure 4.




Going back to Figure 2 and allowing e, to be the state
variable vector (same order as the matrix K or K'), the

equations in the time domain can be written as follows:

twr 2 1 [ 1 | 2 ] 1 2 =
Kleel + KlKue2 + Klee3 + ... KlKnen/Z

- ' ; - ¥ - S - . -
(I + K'lK2 + Kle)el (K&Ku + KlK'u)e2 (K&K8+K1K%)e3
] ] - - - - -1
-(KlKn+KlKn)en/2 Kleel Kque2 e KlKnen/Z + IU
(10)

' o vt y oo ] €Ny oo 1 . =
K1K2e1+(K&+K3)Kue2+(Kl+K3)K6e3+...+(Ki+K3)Khen/2

- X! A - H vt 1 : -
(KlK'2+1<lK2)el [(I + Ki+£3)Ku+(K1+h3)‘L]ez

[(Ki+K§)K6+(Kl+K3)K%]e3-...-[(Ki+K%)Kn+(Kl+K3)Kh]en/2

-Kleel-(Kl+K3)Kuez-(Kl+K3)K6-...-(K1+K3)Knen/2+IU

(1)

| | B ] | T 1] | B 74 ] 1 | B -
K1K2e1+(K1+K3)Kue2+(Kl+K5+K%)K5e3+...+(K1+K%+K5)Knen/2 =

‘(K1K5+Klk2kﬁ7[(Ki+K§)Ku+(K1+K3)Kh]eZ-[I+(K&+K%+K%)K6 +

1 1o - - .
(K1+K3+K5)K6]e3 o [(K&+K§+K%)Kn+(Kl+K3+K5)K%]en/2

_K1K2el_(Kl+K3)KueZ-(Kl+K3+KS)K6e3_'"-(K1+Kﬁ + KS)Knen/2+IU
(12)

19




Tt oy o
Kleel

\ t 1 23 1 ] 1 P
+(K1+K3)Kue2+(Kl+K3+K5)K%e3+

1 -
+ (K&+K§+Kg+'"+Kn-l)Khen/2 =

ard 'Ya o [(x' +1? 2 PO
(K1K2+K1K2)el [(K1+K3)Ku+(Kl+K3)Ku]e2

1 1 :
[(K&+K5+K5)K6+(K1+K3+K5)K6]e3-...-

[I+(Ki+K'+K‘+...+K'

L qe
LK R=1 K PO +Ko#K e+ Lo +K (DK Je

3 75
-KlKZel-(Kl+K3)KueZ-(Kl+K3+K5)K6e3- cen =

(K1+K +K5+ Le. + K JX e + IU

3 n-1""n"n/2

and

Y = K, e, +K' e

, . L
281t Kpe PR e Ko )t v HKpe s K80

where U and Y are the input and output variables of the

system respectively and I is the Identity Matrix. From

Equations (10), (11), (12), (13), and (14) the following

corresponding matrix formulation can be obtained:

[Al]ﬁ = -[A2]E - [A;IE + [B1U,

and

_ T T,
Y = [C1] E + [c2] E.

(13)

(14)

(15)

(16)




'P','.""""""""""""""'“"“""""""""""""

,
!
i
t
]

where
| | t | W 1 1]
Ky K, KUK KIKL.ooeiinnenn K KL
wt 1] ] 1 1] 1 1 1 1
KIKY (KI+KDIK] (KP+KDKE ... (KYy +K K
N | \] t 1} 1 1 1 L4 1 L4 1 4
KK (KY+KDIKL (KK +KEIKE . o (K +KGHKE K
[Al]=
| ] 1] | ] 1 ! ] 1 1 ] 1}
LF&Kz (K1+K3)Ku(Kl+K3+K5)K6...(K1+K3+...+Kn_l)KQ_
(17)
®1
&,
. é
(E]=| 3
n/2]
(18)
] M 1 M \}
F1+K1K2+KIK2 K KL+ KUK L
' ( ; .
Ky KO +K K I+ (K, + KK + (X + KYIK, -«
[} [ \
[a,] = K KL KX, (X, + KK, + (kY + KK, ..
% |' ] ] .'
_§1K2+K1K2 (K, + KIK| + (K| + KyIK, -
] Wt
Ce K KK K
1] 1 ]
(K HRG KR+ (KL +KUDK .
] t
CI# (K KR K+ (K] K HKEI K e o

-

1 : ]
.(&1+K3+K5)K%+(K1+K§+Kg)K5...

21
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o JKGKHKLK
n

[E]=

CA3]= K K

K1 +K + KT
.(K1+K +K5)Kn+(Kl+K

1 1l™n

1 4t 1
.(Kl+K3)Kn+(Kl+K3)Kn

. 1
3 3¥KgIKY

t ! 4 Vel
CIH (K KGR+ L 4K DK (K

5

K (K1+K3)KL+ (K1+K

n/?2
- -

K KlKL+ KlK6

(K1+K3)Ku (K1+K3)K6

(K1+K3)KL+ (K1+K3

3

+K5)K6...

+K5)K8...

+K3+K5+...

.KlKn
.(1<1+K3)1<n
.(Kl+x

3*K;g

.(Kl+K3+K5

+K KD
-
(19)
(20)
)X
n
oK K
(21)




€ns2 *©

—

*(n/2-1)m+1

®(n/2-1)m+2

5E(n/Z)m
L

(26)




L4

4
!

~ 7 ~ ] . m r n
1 X+l Xom+1 X(n/2-1)m+1
. *2| . me2| ¥om+2| | ¥(n/2-1)m+2
e, = . e, = . e, = . e /g = .
L_XT& _X2m_ _X3m ] L_X(n/2)m
(27)
— - _ - —
*1 rkm+l x2m+i} *(n/2-1)m+1
*2 1 ¥m+2 | *om+2 | *(n/2-1)m+2
ey = Sy = 1. €3 7 1. /2 T .
X X x L?
| "m]| L~ 2m_| L 3m | (n/2)m
(28)

where m is the number of inputs and outputs. It is important
to emphasize the properties that the Cauer matrix mixed form
exhibits. If again the Ki's go to zero in the state formula-

tion described by equation (15) and (16), they will reduce to:

[All]E = -[Azl]E + [B]U, (29)
and

- Tz
Y = [021] E. (30)

and letting K'i's = H'i's equation (29) and (30) define the
state space formulation of the Cauer matrix first form for

an nth/2 order system, where n is even, Eguations (29) and

24

e e




(30) are second order differential equations which can be
simplified to first order differential equations by
assigning a new state variable [Z] = [E]. Thus equations

(29) and (30) can be rewritten as:

[All]Z = [AZl]Z + [BJU, (31)
and
T
Y = .
[C2l] Z (32)
. e = ; Krin - ER
where [All] lim [Al] and K'i's H'i's
Ki's - 0
then:
1 t
Hin HiHL HiH% ...HiHn
1 1 \] \ t ] had | (3 (]
- HlHQ (H1+H3)Hl+ (Hl+H3)H6 ...(dl+H3)Hn
- Tt ? 1 1 !y t 4y 1
[All] Hle (h1+H§)Hu (H1+H3+H5)d6...(H1+H3+H5)H%

] ? 1 1t 1 \ ] | 1 t T
LHlHZ (HY +HY)DH], (dl+H3+H5)H6...(H1+H3+H'5+...Hn_l)r{'&
(33)
€1
éz
2= e3
€n/2
- (3u4)

R et T e T e



where e, @y, &3 ... € ,, are given in equation (27).
(A,,1 = 1im [A,] = (1], (35)
Ki's+0
where I is the Identity matrix.
®1
2
Z = (%3
®n/2
(36)
where €,5 €,5 €3 ... € ,, are given in equation (28)

~ T_ Ly T 1t - 131 T- 1 1 A A
L 1° = llm[C2] and K'i's = H'i's [C21] = [H2 Hl+ HG"Hn]'

Ki's+0 (37

This formulation given by equations (30) through (37) could
have been obtained directly by inspection from Figure 3.
Similarly, if all K'i's go to zero in equations (15) and

(16) then

.
¥

= -[A3,]E + [BIU, (38)

and

_ T
Y = [c,,1E, (39)
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where

- s L | - .
[A32] = llm[A3] and Ki's = Hi's
K'i's=+0
Hle HlH,4 Hle ..HlHn
H1H2 (H1+H2)H4 (H1+H3)H6 .(H1+H3)Hn
[A32]= HlHZ (H1+H3)HU (H1+H3+H5)H6...(H1+H3+H5)Hn
HlH (H1+H3)Hu (H1+H3+H5)H6...(H1+H3+H5+...Hn_l)Hn
(40)
and
[c.. 17 = 1imlC.1T and Ki's = Hi's
12 1
K'i's+0
T _
[C12] = [H2 HH H6 .. Hn]. (41)

which define the state space formulation for the Cauer matrix
second form. Again, this preceding matrix formulation could
have been derived directly by inspection from the block dia-
gram shown in Figure 4. Equations (40) and (4l1l) have the
same form of the state space formulation given by Chen [1].
At this point, the following observations may be made re-
garding the state space formulation just developed:

1. The elements in the state matrix [Ai's] are simple

matrix combinations of the matrix quotients




obtained from the continued fraction expansion or
Routh's algorithm.

2. The submatrices appearing below the main diagonal
have the same value as the submatrices at the
diagonal (with exception of [A2]).

3. The submatrices which appear above the main diagonal
can be expressed in terms of matrix quotients in a
very regular way.

4. State space formulations for the first and second
Cauer form can be obtained directly from the Cauer

mixed form thrcugh direct substitution.

APPROXIMATION BY THREE CAUER FORMS

(@]

The reduction of the order of a transfer function or
decreasing the dimension of a state matrix is highly
desirable or sometimes necessary in the analysis and design
of control systems.

In terms of continued fractions, the simplification
problem is carried out by expanding a given transfer function
into one of the Three Matrix Cauer Forms of continued frac-
tion and ignoring some matrix quotients. If the given
system is outlined in state variable form, the simplifica-
tion method is realized by partitioning the matrix and
discarding some parts. Several examples are included
for demonstrating the power of the method. Also a thorough
comparison among the three Cauer forms is presented and their

advantages and disadvantages are discussed.
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Feedback Gain and Feedforward Gain - Consider the system
shown in Figure 5. The closed loop of the overall transfer

function is known as follows:

T(s) = [H) + [F, + c1°13°1 (42)

©

"\
A e
s\

Figure 5. Block diagram for a typical feedback system

with a minor feedforward loop with two in-
puts and two outputs.

where G = 0. Equation (42) can be considered as the simplest
continued matrix fraction expansion. The physical meaning
implied in the formula is significant.- It is easily seen

that when F2 is high the overall gain can be appreximated by

Hil, in other words, H; dominates the behavior of che

system.
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This fact establishes the feedback loop as the most im- i
portant link for influencing the behavior of the system,
leaving the feedforward loop as the second most important
link. Furthermcre if the subsystem G, instead of being zero
is still a high order transfer function, it is possible to
continue the expansion one after another. This corresponds
to a combination of many feedback and feedforward blocks as
shown in Figure &. It should be noted that the most dominant

term is Hl and the second influence term is F2. When the

matrix gquotients in the continued fraction are lower and
lower in positions, they are less and less important as far
as the influence to the performance of the system is con-
cerned. This observation is the general basis for the sim-
plification technique developed for multivariable systems.
Considering a simple case, a second order transfer

function such as:

- 2 -1 ,
T(s) = [AQZS + A21][A135 + AlZS + A11] (43)

can be expanded into three different matrix Cauer forms of

continued fraction as follows:

|
; R
X F .(s) = [H'S + [H' + [H.S + [H']'ll'l]'l (uy)
' cl 1 2 3 n
?
f _ 1 17-1,-14-14~1
: Fcz(s) = [Hl + [Hzg + [H3 + [Hugl 1771712 (45)
. ) 1 -1.-1
¢ Foa(s) = [K, + KiS ¢+ [Kzg + K1 7] (46)
y
2
30

N
'
4
\
!
[
1




h -

Block diagram representation of a continued fraction expansion.

Figure 6.
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where Fcl(s), Fc2<8)’ and FC3(s) are the first, second and
mixed Cauer continued matrix fraction expansions of equation
(43).

From previous observation, it is known that the most

dominant term in equations (44), (45), and (46) is His, H

and Kl + Kis respectively. It is desirable to find a

meaningful interpretation for the dominant term of each one

1

of the expansions just performed. This task is accomplished

by applying the initial and final value theorems to equations
(44), (45), and (48) as follows.

1. Cauer First Form

o Performing the inverse procedure on Fcl(s) it can be

written as

YOS) ot g ' ' Yoot @2 ot B2 ot -1
Fcl(s)-UTET_[H2H3HHS+H2+H4][H1H2H3HUS +(H1H2+H1H4+H3HR)S+I]

(47)

Applying the final value theorem to equation (47) and

allowing

where m is the number of inputs is
found that

s




ce— e

!
|
{
!

y(t->°°)=[H2+Hu]
s=+0

(48)

similarly, applying the initial value theorem and allowing

11
Uls) = |2
1
m
- -
1
-1 12
y(t-0)=[H! ] :
g+
[l

(49)

The meaning implied in equations (48) and (49) is very
significant. The initial conditions dominate the behavior
of the system. In other words, the Cauer first form
influences very heavily the transient part of the response.

2. Cauer Second Form

Performing the inverse procedure of Fcz(s), this can

be written as:




( )= Y(s)_

2 -1
=gty LHtH S+H HGH JIIS ™+ (H H +H H) +HoH, )S+H HyHH ]

2
(50)

Applying the final value theorem to equation (50) and allowing

Fil l1
2| |t
U(s)= |. < it is found that y(t-w) = [Hl] .
: s~0
) tn
(51)
Similarly, applying the initial value theorem and allowing
o] o]
1 h
1 )
U(s)= |° y(t~0)= [H + H, 1
‘ g 4
] *n]
(52)
» The results obtained in equations (51) and (52) imply that
' the final or steady state value dominates the behavior of
> the system. In other words, the Cauer second form influences
;; very heavily the steady state part of the system response.
v 3. Cauer Mixed Form

Performing the inverse procedure on Fc3(s) this can

be written as:

) (s)=X¢s) [K,S+K, ][K'K'S +(I+K. K"
' c3(8) =gy 1X7

+K{K,)S+K Kzl‘l (53)




a1 SN

Applying the final and initial value theorems to eguation

(53) in the same fashion as for the previous forms, the

following results are obtained:

PR —

L
1)
y(te) = [K 171"
s->0 .
R
m | .
(54)
and — —
1
_ -1
y(t-0) = [K&] 1,
S+®
1
L T
(55)

These results show the steady state value and the initial
conditions to dominate on equal levels of significance the
behavior of the system. Thus the Cauer mixed form influences
the system response in the transient part as well as in the
steady state part. This fact makes the Cauer mixed form a
better and more accurate device to be used in the simplifi-

cation and reduction techniques of transfer functions of

multivariable systems.
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D. TRUNCATION OF THE CAUER MIXED FORM THE BEST APPROXIMATION
IN A DEFTINITE MATHEMATICAL SENSE FOR MULTIVARIABLE
SYSTEM REDUCTION

In a recent paper, M.J. Goldman and C.T. Leondes [8]
developed the mathematical basis for the simplification
technique involwving the truncation of the mixed Cauer form
for the single input single output case. In this section,
an extension of their work to the multivariable case 1is
presented and its superiority over any other form of con-
tinued fractions is established.

The transfer function matrix T(s) for multivariable

system can be expressed as follows:

n-1 Sn-2

T(s) = [A S + A +...+A2382+A25+A ] x

2 21

2
+ A S + Aj,S5" + A 2S + Al

-1
A1 ,n+1° 1,n SRS T 1 !

1
(56)

where Ai,j are constant, m by m matrices and Aij = ajlI],
j = 1,2,...n+l, where each aj is a coefficient of the
common-denominator polynomial or

n+l
z

A(s) = ajS]-l and [I] is the identity matrix.

i=1

The nth convergent of a mixed matrix Cauer form can be

represented by the following two configurations:
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e e’ o — o ———
-1 ) ' st aq=lq=1q=1,-1
Aan -[Kl+KlS + S[K2+KZS+S[...S[Kn+KnS] 1771771 (57)
Carlalre Logalrg Loyl Il -17-13-13-1
Aan '§[Kls+Kl+s[K25+K2+s["'s[Kns * Kh] L (58)

where

An = KnAn-l + SK'nAn_l + SAn-Z’ AO = 0 Al = I
(59)
- ] - - 1]
B = KB, *+SKB . +8B ,,B =0 B =K *+KS
l-!-_ 1 1 Al l‘. = ':.}:.
A, @ sKnAn—l * KnAn—l * sAn-Z’ Ao 0 Ay 51
(60)
v_irm (Y] lv | v=£ '
Bn - shn“n~1 * K Bh-1 t an-Z’ Bo =1 Bl sKl * Kl
Recurrence relations (59) and (60) have been derived from
standard results in the theory of continued fractions
(Rice 1964) and Kn's and Kh's from the generalized matrix
Routh Algorithm (Shieh and Gaudiano 1974).
Since
A B~t = gl (61)
nn nn
then
- oDy
An =S An
B, = Sth n=0,1,2,... (62)
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Proof:

Substituting equation (62) into (59)

SPAL sn‘lanh_l + sxhsn‘lAh_l + ss™%p

and (63)

Nnnt n"l [] o n-l [
S Bn S Kan-l + bK%S B2

Dividing equation (63) by S, recurrence relation (60) is
obtained. (It is important to notice the generality of
equations (59) and (60). By making all the K's = 0, the
recurrence relationships for the nth convergents for the
Cauer first form is obtained, similarly by making all the
K'is = 0, the recurrence relationships for the nth covefgents

for the Cauer second form are obtained.)

From (59)
K = [A - SKA ; ~sa 1t
and (64)
K = [8 -sSKB , ~8SB ,I8%,
Solving and simplifying terms
Aan--l - BnAn-l : _S(An-an—Z - Bn—lAn—Z) (65)

>
w
)
(ss)
>
1]

(-5)P L1, (66)

where I 1s the Identity Matrix.
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Hence, the difference between two consecutive convergents is

given by

-1 -1
ABT - A (B = : (67)

Similarly, from (60), and following the same procedure

MB - BLA = (A H

- nt 1
s n-1"n-=2 Bn—lAn-2>‘ (68)

So by induction

1
U t - A e -
Aan-l BnAn—l S ( s

and the difference between two consecutive convergen®s is

given by

-1
1]

le_v
Aan A

71 .1 (o Lyn-l
S ( S)

H 1
n-an—l - [Ban-

By looking at the recurrence relations (58) and (60), is
observed that when S=0 or S=w, respectively, all Bn and all
Bh are non-zero provided that all Kn and K% are non-zero,
This is equivalent to apply the final value theorem to
equation (87) for a unit step inputs; and applying the
initial value theorem to equation (70) for an impulse
response.

Hence,

1 -1

j _ -
& rast-a Bl lim £ 1 * s(-5)™ 1[5 B
S nn

dsd nnr -1

s+0

0 j =0,1,..., n=2
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Similarly,

J
d” rpwl_ o gl o qs s 1 1 -1
EQT[Aan A 1B 1752w = 1im S % S 1 (-2)[B B _,]
S+
=0 j = 0,1,.. , n=2

(72)

Equations (71) and (72) show the results that were expected,
namely: The (n-1)th approximant and the nth approximant
goes to zero in the sense of minimizing the follows semi-

norms of the difference

| TR |
[{F__,(s) 4 = I — F (s)| _~ =0
n-1 n-1 320 ds n-1 s=0
n-2 dj
4 = = -~ F =
IIFn_l(s)Iln_l '§O | = Fn_l(s)ls=°° 0
3= s (73)
where
_ -1 -1
Fn_l(s) = Aan - An—an-l
‘ and (74)
! =1 =1
v - At nf _ A
' Fn—l(S) - Aan An-l %-l

Note: A semi-norm is a norm which does not satisfy the norm

L A

axiom "||F(s) || = 0 implies F(s) = 0".

Since the derivatives in (73) correspond to the coeffi-

O

el

cients in the Taylor series expansion of the functions

Fn_l(s) and Fh-l(S) about the points S=0 and S=~. Then, it

v can be deduced that the output difference to a nth approximant

b
¢
i
'
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has the same Taylor series as the original function for

l)n-l
s

n-1

terms up to S and (

, effectively neglecting the part
of the transfer function which differentiates the input > n
times in the steady state as well as in the transient. This
gives the sense in which the approximation by the Cauer mixed

form works.

E. SIMPLIFYING A MATRIX TRANSFER FUNCTION

If the following nth order system is given,

sl oA s+ A s? A s +aA

T(s) = [A; | 24 23 22

21] x

[A n 3 2 171,

1,n+1S * o--ALST ¥ ALST 4 A LS A

(75)
a simplified model of the system is desired. By performing
the Generalized Routh's Matrix Array, the matrix quotients
of the Cauer mixed form in equation (3) can be obtained.

If an m order is desired only the first m pairs of K's
and K'is should be kept in eguation (3) and the remaining
should be omitted. Aifter the inverse procedure has been
performed on the truncated continuted fraction, the simpli-
fied model is obtained.

For example the general transfer function obtained by the
matrix continued fraction expansion for the Cauer mixed form
is given in equation (76).

e 1 1 -1q-14=14-1,-1
T(s)-[K1+Kas+[KZS+K%+[K3+KSS+[KMS+KL+[...] 1771711 (76)
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If a second order simplified model is required, only the
first two pairs of matrix quotients will be kept, that is
Kl, K', K2, and Ké, and the rest should be discarded.

After the inverse procedure has been performed on the
truncated matrix continued fraction expansion, the transfer
function given in equation (77) is obtained. Equation (77)

is the simplified model in Mixed Matrix Cauer Form.

2
- 1 1 1]
T(s) = [K28+K2] X [lezs +(I+K1

The truncation procedure outlined above, applies in similar
manner for the Cauer's first and Cauer's second forms.

This methodology is particularly advantageous when state
space terminology is used. For the Cauer mixed form, the

state space formulation is written as follows:

e e —

et 1 et 1 et T

K1K2 KlKu KEK% ...KlKn El
' 1 1 1 1 ' ' '

K'll('2 (K1+K'3)Kl+ (K1+K3)K6 c e (K1+K3)Kn EZ

e ' ' ' ) ? ' 1 v 1 ' .

thz (K1+K3)Ku (K1+K3+K5)K6 ...(K1+K3+K5)Kn E3

-1
1 1
K2+K1K2)S+K1K2] (77)

11t v ' t ' v 1 ' ' ' 1 ' -
_Fle (K1+K3)KU (K1+K3+K5)K6 ...(K&+K3+K5+...+Kn_l)Kq- En/%‘
' ' 1 '
I*K1K2+K1K2 KlKU+KlKH ..K&Kn+KlKh El
' v ' ' 1 ' ' 1 5
K1K2+K1K2 I+(K1+K3)KH+(K1+K3)KH"(K1+K3)Kn+(K1+K3)Kn E2
1 1 1 L 1 1 5
K1K2+K1K2 QHTK3)K4+(K1+K3)KU ..(Ki+K3+K%)Kn+ E3
: : (K)+K3*KgIK
: ' ' ' v ' ' '
K&KZ*KIKZ (K1+K3)Ku+(K1+K3)Ku ..(K1+K3+...+Kn_l)Kn+ )
'
g (K1+K3+"'+Kn-l)}<n__j L_En/z_J




i —~ arr
¢ E 1]
K K, K K, K K, 1 I
KiKy (K +KK o (K PKK E, I
- K Ky (K +KIK, (Kq+K +K DK con (K FKG+KOK Ey |+|Ily
_Fle (K{+K4)K, (Kq+K 4 +Kg ) Ko ...(K1+K3+...+Kn_l)KQ__-n/& ji
(78)
and
-~ - ~ ]
E) E;
E, E,
- 1 ] 1 t
Yy = [Kz, Ku, Ks, e Kn] E3 + [K', K}, » KG, - Kn] E3
X :
_En/z_ _}_:n/ZJ
(79)
where
~ ] . 7]
€1 Cn+l €(n/2-1)m+l
Sl . n+2] . S(n/2-1)m+2
S W N B R B Ense 7|
| “m]| _eZm_J _e(n/Z)m |
I = identity matrix, and El’ 22 .o En/?’ E

1’ E2’ Tt En/2
have the same dimensions as él’ ﬁz, e ﬁn/Q respectively

and m corresponds to number of inputs or outputs.
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It is interesting to note that the simplification of the
state equations can be carried out by partitioning the matrix,
or by only keeping a part of the original matrix as a simpli-
fied model. 1In other words, if a simplified model of a two
dimensional matrix is required which is equivalent to a
2 x (2m) order transfer function, the upper left hand corner

of the original matrix is taken as the simplified model.

Therefore:
=] ’ 1 1 1 -
KiKy XiKy Byl IH<1K2“< Ky KK KK, By
t ' 1 1 o 1 ' 1 1 .
LF K (K1+K3)KE.LF%. LF K +K K I+(K1+K3)Ku+(Kl+K3)Kl+ E2
K. K, K. K {E I
172 1y 1 ., U
K K, (K,+K,)K E I
C12 e ] P (80)
By
Y = [K,, K,] o + [K,, K]
2 (81)
where the vector E ., E,, El, Ez, E;» E,, keeping the same

dimensions as were given for the equations (78) and (79).
The method used for the simplifications of a transfer func-
tion and state space formulation based on the Cauer mixed
form holds in the same fashion for the Cauer first and second
forms.

For effects of simulation Figure 7 shows a diagram for
two inputs two outputs fourth order system for the Cauer

Matrix mixed form, in similar form for the Cauer first and
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for Cauer matrix mixed form.
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second form a simulation diagram can be obtained as given
in Figures 8 and 9.

It is important to notice the number of reductions, q,
which one can realize are constrained by the number of inputs,
m, and the order of the system, n, where q = n-km for
k=1,2,... and g > 0.

E. NUMERICAL EXAMPLES AND GRAPHICAL COMPARISON OF THE

THREE CAUER FORMS

1. Example 2.1

Consider two inputs, two outputs fourth order system
where a reduced second order system is required.

The state space equations for the system are:

r - r -
0 0 3.25 -1.125 0] 0
0 0 2.25 -0.125 0 0
X = x + u
-1 6.5 -1.5 -0.5 0.5 0O
-1.5 -0.5 <=1.0 -4.0 1 0.5
L. - L -
(82)
1 -1 1 1
Y = X
0 1 -1 1l
L. (83)

The transfer function for this system is given by equation (8u4).

s+l s-=1 232 + 35 + 2 s-1

-2 s+1| |-us? - 4s =1 252 + 65 + 3

T(s)=

(8y4)
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Figure 9. Simulation diagram for fourth order system with m = 2
for Cauer matrix second form.
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From the transfer function, the matrix Routh's Array and

the following matrix quotients for the three Cauer forms are
obtained.
Therefore, reduced second order models are:

Cauer first form

1 - 5 -1 1
H' = H' —-
1 -1 3 2 1 5 13
Cauer second form
2 1 0.5 0
H, = H
L 1y 2 0.125 0.25
2 1 1 -
K, = K'
11 2 N 3

Cauer mixed form
where their respective transfer functions are given in egqua-

tions (84), (85), and (86).

Cauer first form:

c+ 2.5 s-0.5 1
Fcl(s) = v
s + 0.5 s + 2.5| 2s° + 10s + 6.5

Cauer second form:

(84)

4s + 2 -1 1
Fcz(s) = 5
s + 1 2s + 2 9s” + 13s + 5§

49
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Cauer mixed form

3s + 2 s -1 1
FC3(S) = ?
s + 1 s + 2| 28 + 8s + 5

Figure 10 presents the step responses of reduced models just

(86)

developed, where (l0a) corresponds to the output (1) and (10b)
corresponds to the output (2).

2. Example 2.2

The following example shows the reduced systems in
Cauer first and second forms are only stable for a second
order approximation, their fourth order approximation pro-
vides an unstable response. Whereas, the fourth order
approximation for the Cauer mixed form is completely stable.
Furthermore, the Cauer first form gives a poor approximation
in the steady state portion as is expected. Consider the
following sixth order system with two inputs two outputs as

given in equations (87) and (88).

5 0 1.0 0 0 0 o 0
0 0 0 1.0 0 0 0 0

% =0 0 0 0 1.0 0 | x+ 0 ao]u,
o 0 - 0 0 0 1.0 0 0
50 9.96 -108.5 19.6 -16.5 & 2 -1
|49 -19.96 107 -39.6 13  -10 -2 2

(87)
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The transfer function of this system is given by equation (89).

s + 10 0.252 + 0.2 + 0.1

T(s) = 2 %
ST + 25 + 1 s + 4

83 + lOs2 + 558 + 25 0.582 + sz+ 0.2s +0.2

3 4 3.562 + 1.55 + 0.5 s + 652 420 s + 10

-1
(89)

or if the inverse 1is to performed

3

5 4 2

0.255° + 0.1s" + 14.95° + 79.25s% + 209.75s + 99.95
T(s) = 3
s + 7s + 25.5s” + u40.5s° + 33.5s + 8

0.2s° + 1.7s% + 7.1 + 6.8s% + 8.u8s + 2.3 |,
8

-0.58° - s¥ #11.35% + 93.58s2 + 24u4.76s + 99.9
1
+ 13.25s° + 130.55s" + 562.53s

b 3 2

0.5s + 1349.135°+104Q.875+249.99 i

(90)
a. Cauer Matrix First Form

Performing the respective Routh's Array:

i""

;: pt 0.5 TJ[1o 1 55 0.2

v 1 1 (3.5 6 1.5 20

v I 0.2 T 0.2 0 0.1

? L_:L 0 ] 2 1 1 y

‘ 5.5 -0.5 729 -4.05 [75 o.oﬂ
' | -3.5 4 J[-49.5 15.5 (9.5 10
; [2.686 -0.5 ][9.1 -0.48405]

% [-2.5 1.417 |{-3.95 3.75 |

[ X}

- 7.823 -4.996][25 0.02
‘ -53.664 3.163 |[0.5 10 J

)
4
-Ii 52




7.234 -0.055
3.0u6 3.696
5 0.02

0.5 10

and from the Routh's array, the respective H'i's are:

(2.5 f] 0.035 0.054
1 - 1] -
Hy = Hy =
|5 1 10.137 0.025
[2.566 0.556 0.076 -0.039
1 - 1 -
H3 = HL; -
11.986 3.526 | ~0.28 0.006
1.6u -1.327 .29 -0.006
1 - 11t -
HY = HY =
1-7.73  0.74 10.114  0.363

The state space representation in Cauer first form

is given by equations (91) and (92).

.284 0.16 ! -0.09  -0.092 0.338 0.352
0.36__ 0.296_1 -0.099 -0.189 ! 1.562 0.339
07285°707I6 -0.052 -0.188 1 1.6u4 0.544| , _
0.37___0.296__ -0.738_ -0.246_ | 2.54% 1.629| ° °
0728R7707I6 T TC0V05277=07IBETT 1.967 0.043
0.37 0.296 -0.738 =-.246 0.387 1.949
1 6 16 010 @ 1 0
0__1 30 0,0 0 o___%
670" 1 0o of z+ 17770 U
c_ 0 0. 110 0 9___%
5700 0 1 o© IT°7°0
0 0 0 0 0 1 (0 1
(91)
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0.035

0.054 | 0,076

l

0.006

~0.039 | 0.289

~0.006

0.369

10.197 0.024 | -0.28 | 0.11u

(32)
The reduced fourth and second order model are obtained by
partition of the respective matrices in equations (91) and
(92). For this case, the fourth order model is unstable and
the second order model gives an untolerable error in the
steady state portion of the response, so this method is not
applicable for this example.

Figure 11 shows the step response for the original

system and the reduced second order model.

Cauer Matrix Second Fcrm

Performing the respective Routh's Array:

——

25 0.02 55 0.2 0 1 7] 0.
0.5 10 | 1.5 20 J|38.5 & | |1 1
10 0.2 | 1 0.2 TJ0 0.7]

1 n 112 1 Jia 0 |

52.61 -0.2u43] T[10.058 0.4997][1 0.5

-3.31  17.535) [0.995 6.04 |1 1

-0.925 0.054° | [-0.199 0.0967]

1.437  -0.397] [ 0.738 =0.245

2.663 5.1 7| T1 0.5

25.5 0.339 | |1 1

-0.175 0.127"

0.756  -0.269

1 0.5

1 1 ]
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and from the Routh's array the respective Hi's are:

2.505 -0.058 ] [0.191 0.008"
Hl = H, =

1-0.2 2.505 ] |0.033 0.229;

[=71.026 -9.128 | [0.013 -~0.038]
Hy = H, =

| -82.527 ~55.455] 10.083 0.065

™ 92.956 25,02 0.604 0.429
Hg = He =

| 145.353 67.357] 1 2.05 -1.293

The state space representation in Cauer second form is

given by equations (93) and (9u).

-0.008 | -0.033 0.098 ! 1.832 -1.1S5 10
-0.045 -0.571 1+ 0.21 =-0.17 , =5.255 3.33 01
- -0.008 0.168 -1.986 | -22.573  17.54| |1 0|,
© 7|z0.045__-0.571 __-3.263___0.322_1 58.535 -32.97 01
-0.008 0.168 -1.986 =-17.869 10 10
-0.571  -3.263  0.322 8.3 -8.25 01
(93)
0.191 0.008 | 0.013 -0.038 | -0.6 0.429
Y = | | z
0.033 0.229 | -0.083 0.065 | 2.05 =-1.293
(34)

The reduced fourth and second order model are

obtained by partition of the respective matrices in equations

(93) and (94). For this case like the Cauer first form, the
fourth order model is unstable and the second order model

offers a good approximation to the step response of the
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original system. TFigure 12 shows the outputs of the original
and reduced second order model for a step input.

¢. Cauer Matrix Mixed Form

Performing the respective Routh's Array:

25 0.02] [55 0.27] [1o0
0.5 10 1.5 20 3.5

J v

+ O

-1.832 -0.8
-7.2 -0.8

(10 .1 1
11 2
[T 26.62 -4.493 5.558
[~54.31  13.035] |6

A

and from the Routh's array the respective Ki's and K'i's are:

i

S

-1

0.2
0
‘.0u)

2.505 -0.058 2.5 T
- 1 -
Ky = Kl =
-0.2 2.505 E 1
1.32 0.463 [0.073 0.068]
- 4 -
K, = K, =
2.24 1.079] 10.246 0.061]
10.738 -6.428 [2.33 =1.365]
- 1 -
K3 = K3 =
-27.468 1u4.532] |-6.77 2.556]

The transfer function for the reduced fourth order system
is given in equation (95). For this model the step response
is completely stable and the approximation has an error of

only 0.5% over the entire response of the system. Figure 13
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shows the outputs of the original and reduced fourth order

model for a step input.

~0.012s° - 0.063s2 + 1.44s + 0.972

F(s) = 3 2
0.061ls” + 0.773s” + 0.278s + 0.078

-0.03s - 0.234s% + 1.784s + 0.972

0.01253 + 0.17332 + 0.068s + o.ozf}
%
1

0.03s” + 0.97953° + §.21552 + §8.718s + 2.431 (95)
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ITIT. DERIVATION OF LOWER ORDER SYSTEM FOR THE LINEAR
REGULATOR PROBLEM VIA CAUER FORM

A. LINEAR REGULATOR SYSTEM
R. E. Kalman [12] has shown that when a system is
described by equations ( 96 ) with a performance function

given by equation ( 37)

% = Ax + Bu (96)

% z[xT Q x + uT

[
n

R u] dt (37)

and if the plant is completely controllable then an optimal

o’

u®* exists and is given by equation (98 )
u® : -Kx (98 )

where the feedback matrix K for the controller depicted in
Figure 14 is a constant matrix as t-w.

In recent papers, Goldman [10] and Acki [18] have
derived a way to obtain near optimal solutions using the
"aggregation matrix", to transfer an arbitrary state x to the
origin of the state space while minimizing the criterion
function given in equation (97 ).

The present work will show that the reduced order optimal
regulator can be obtained where the original system is
translated in Cauer form and also a near optimal solution

can be found through a mere partition of its optimal solution.
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| . s l
' |
‘ |
‘ |
i
: ° ! |
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‘ | REGULATOR \

. Figure 14 . Linear Regulator System

B. THE STATE VARIABLE REPRESENTATION BY CAUER
SECOND FORM AND ITS OPTIMAL SOLUTICN

3 It is known that the standard state variable representa-
) tion of a linear time-invariant system is given by equations

(99 ) and (100).

@il

N < S
x
"

Ax + Bu (989)
i ,
!
where %X 1s a column vector nxl given by [kl, iz...in]T, A

M is an nxn constant coefficients matrix, x is a column vector

..xn]T, B is an nxl constant coefficients

ol nxl given by [xl, X

2’




matrix, u is the input, y is the output and C is 1xn constant
coefficients matrix.

Goldman (10), Chin and Shieh (11) have proven that the
system given by equations (99 ) and (100) can be represented

in Cauer second form as shown in equation (101) and (102).

z = Fz + Gu (101)

y = Mz (102)
where,

F = pAp~ L (103)

G = PB (104 )

M = cpl | (195)

where the matrix P is an nxn upper triangular matrix and the
elements in the triangle are copied directly from the elements
of the Routh's array, where the nth row of the P matrix

is the (2n+l)th row of the Routh's array and the states

variables x and z are related by equation (106).
z = Px (106)

If the system in (99 ) and (100) is put in transfer function

notation the result is given by (197).
_a2l+a225+a235°+a2us3+. . . +a2ns™?

T(s) > 3 5
all+al28+al3S " +aluS™+...+a2n+ls

(107)
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The Routh's array can be formed as
all al2 al3 ... aln alyn+l
a2l a22 a23 ... a2n (108

and the elements of third, fourth, and subsequent rows can

be evaluated from the following algorithm.

ajk = aj-2, k+l1-fj-2aj-1, k+l 323,4,...,0+1

° 9 0 o0

109)
= 2P>2 b1 =
fp ap+l,l P 1,2,...n 110)

The elements of the matrix F can be obtained alsoc from
equation (111) where ap,l and ap*l,l correspond to the
elements of the first column of the Routh's array and then

F is formed as shown in equation (11l).

(f2f1 fufl f6f1 ...fnfl ]
f2f1 Ffu(fl+£f3) £6(fi+£3) ...fn(f1+£3)
Fz- [ f2f1 fU(FL1+£f3) £6(F1+£3+£5)...fn(fl+£f3+f5)

£2F1 FU(EL+E3) £6(FL+F3+£5)...En(F1+£3+...fn-1) .
- - aw

The elements of the matrix G correspond to a column vector
of nxl of 1's and the elements of the matrix M can be formed

also by fp's where p=2,4,6,...2n as shown in equation (112).

M= [f2, f4, f6,...f2n]
(112)

bu




The performance function given in equation (97 ) can be
translated to Cauer form by using the relationship given

in equation (106), i.e.,

T

I = yS[z#T Q2% + u*' RU#1dt (113)
where

Q. = p~1T Q p~t (114)
and the optimal u®* is given by equation (115).

o= L1 A

u Kc z (115)
where

K = KP™ (1186)

So the equivalent system in Cauer form given in Figure 1u

can be represented by Figure 13.

‘, PLANT :
| Z p z '
| + |
‘ |
| |
| 3 3 !
] - !
|
[ ' —_ -
u* l ‘

c
1 -KC ]

l |
|REGULATOR IN CAUER __ _|

Figure 15. Linear Regulator in Cauer Form.
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Note that KC is the feedback gain matrix of the Cauer g
system and u* is the optimal control law of both systems .
(Figure 1% and 15).

From the theory of optimal control, z* and u* are found

by solving the set of necessary conditions:

z%= 3@- (z¥%, u®*, p*, t)
ap*
= - o (z*, u*, 5*) t) ’
9z ¥
for all :
te(f0,ff] |
H o i
0 —a—u—:c" (Z“, U, p“, t)
2
- 3 H oo ote ~J-
0 = FTYE3 (z%, u%, p¥%, t)

117)

Where the function H is called the Hamiltonion and is

' defined by:

~ AT ~
H(z,u,p,t)=%[lecz+uTRU]+pT[Fz+Gu]

and 5 is the Lagrange multiplier or Costate state.

Substituting equation (118) into equation (117}, the

canonical system in equation (113) is formed.

éf}- F -GR-lGTJ z*]
’.; = , T ’_:_
13 - - b

P Q. -F P




oo i —— » R —

5
!

i

Fortunately, for the Optimal Regulator problem, it is not
necessary to solve these equations. Kalman [12], Tyler,
J.S. and Tuteur, F.B. [19] have shown that when the optimal
control u* is generated by equation (115), the solution

for Kc is obtained from equation (120) where the matrix, T,

is the solution to equation (121) in steady state.

rR71cTT (120)

A
n

FLT+TF-TGR™ T

o
u

GTT+Qc (121)

Equation (121) is the steady state form of the Ricatti
equation.
For the single input case the weighting matrix, R, is

a scalar. When this is the case, a lower order optimal

linear regulator can be found just by mere partition of
F, G, M, Qc and KC matrices as shown in equation (122).

Hence the new system is depicted in Figure 16.

zp zr
i)
+
Gr Fr
ur
-Kr
Figure 18, Reduced Linear Regulator in Cauer Form
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T =y

- ———

F11 Fl12} F13...F1ln

! “1
F21 F22: F23 F2n 1,
F= I G= j-<
Fnl Fn2 Fn3i...Fnn 1
n
M = [f2 fu4 + £6...f2n] 9d11 9ec12 |} o r%an
‘ 1
1
Qc= 9001 9c22 E *9c2n
K = [k X D S N
o] cll cl2 | “cln L}cnl qcn2 ...qcml

(122)
The reduction scheme outline above has left uc* and ur*
unchanged. Therefore,. ur* is the suboptimal solution for
all three systems, that is the original system, the trans-

formed system and the reduced system.

C. THE REDUCED ORDER SOLUTION

Based on equation (122), the reduced system is given by

N
o}
n

Frz + Gr u (123)

Mrz (124)

y

where Fr, Gr and Mr are the partitions of the matrices F, G

and M respectively. W




Goldman [10] has shown that the original system is

related to the reduced order model by the following equations:

3]
> |
1]

<
"

. + ..
where the matrices ¢ and € are partition of the P and P

matrices

eAetzr + eBu (125)
ce’ zr (126)
et zr 127)
£X (128)

-1

in rectangular form respectively, such that ¢ is of

+ o, :
order (rxn) and € 1is (nxr), where, n, is the order of the

original

From

then
Kr =

or

system and, r, is the order of the reduced system.

equation (127) and ( 98) it is easy to show that

+

Ke zp (129)
Ke” @30)
Kre @31)

Note that from equations (98 ) and (Q06)

K
c

xp~t (132)




Then from equations (130) and (133)

Kr = Kc Ir (134)
where
Ir = Pe’ (135)

The matrix Ir has dimension (nxr) and is a special type of
identity matrix where the last (n-r) rows are zeros and the
first ©rxr components correspond to the identity matrix. In
the same way, it is possible to show that the different
relationships that exist for the weighting matrices, Q, Qc

and Qr are given in equations (1236), (137), (138) and (139).

Qc = PTh QP (136)
Qr = e TQe” (137)
or = ¢ TpTqcpe? (138)
Qr = Irt Qe Ir (139)

1. Example 3.1

The transfer function of a system is given in equation
(140). It is desired to control the system in such a way that
a performance function given in equation (141) is minimized.
Due to the systems complexity, a near optimal solution is

desired.

H(s) = — % (140)
$346.15%+5.65+0.5
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J = f%[xTQx+UTRU]dt

where

From the transfer function

The Routh's array

0.5 5.6 6.1 1.0
1.0 0.9 0.0
5.5 6.1 1.0
-1.09 =-0.179

.182  1.0|

0.932

From the Routh's array
5.6 6.1

(141)




'1
f
1

e o om En o —————

0,179 -0.2102 0.032

P‘l= 0 0.193 -0.192
K 0 1.0 (143)

then
(5.6 6.1 1.0
€ -

{p 5.182 1.0 (144)
(ﬁ.179 -0.2102

et = o 0.193
0 0 (145)

The Qc matrix obtained from equation (136) is

I 0.029
]

‘ Qe= |-0.188 0.372 | -0.183
Jd

0.029 -0.183 1.154 (146)

The Fec, Gc and Mc matrices from equations (103), (104) and

(105) are
! 0.015
|
Fe= | 0.139
-5.031 (147)
Ge= | 1 Mc= [0.1786-0.211 0.032]
-z
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The reduced system is given by equation (148) and the

e e e ———

corresponding matrices that describe the system in equation

(149).
Hu(s) = -2.03163+0.193
s“+1.065s5+0.0965 (148) ;
:
!
-0.089 0.105 ]
) Fr= i
-0.089 -0.978
5
1
4
t
17 '

| Gp= -J Mp= [0.1786-0.211]
1

g S

0.159 ~-0.188

| -0.188 0.372 xu9) |

. The computer solution for the three systems for the feedback

gain are shown in Table I.

| TABLE I
H

X SYSTEMS OPTIMAL FEEDBACK MATRIX K

, ORIGINAL 1.79128425 | 2.087266 |0.41034
! ‘

CAUER FORM 0.319649369| 0.0243818 |0.06619982

i | REDUCED CAUER FORM 0.31965241 | 0.02258695

i

v

f

i
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Table II shows values found from the reduced system
back to Cauer form and original system with the equation

(131) and (132),.

TABLE II
SYSTEMS NEAR OPTIMAL FEEDBACK MATRIX
ORIGINAL 1.7308 2.067 0.342
CAUER FORM 0.31965 0.022586 0.0
REDUCED CAUER FORM 0.31965 0.022586

Note that a near optimal feedback matrix is obtained directly
from equation (131? but not to the Cauer system since the
reduction technique discarded the last terms.

Figure 17 shows the step response for the optimal and
reduced linear regulator. Figure 18 shows the optimal and
suboptimal control laws. Figure 19 shows the step response
for the optimal and suboptimal linear regulator.

2. Example 3.2

The methodology just developed is applied to a simple
model of a nuclear reactor power generator [20, 21].

The heat generating process of a nuclear reactor is
dependent upon the mechanism called fission (a fragmentation
of matter). The power generated by this process is directly
related to the population of neutrons, n(t) and can be
described by the following differential equation (developed

from a diffusion balance equation).
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FIG. 17 - EXAMPLE 3 STEP RESPONSE
JOPTIMAL AND REDUCED LINEAR REGULARTOR

<7

0.4y
’
1 N

0,32 0.36 0,40

0.28

“do 2.00 4.00 . .00 10.00 12.00 14,00 18.00 18.00

XSCALE= 2.00 UNITS/INCH RUN NO. 1
YSCALE= 0.04 UNITS/INCH PLOT NO. |




. 18 - EXAMPLE 3.1 - NERR OPT. SOLUTION

MAL AND SUBOPTIMRL CONTRL LAWS
S
o 2
‘ ]
Dl.-w
g
9’.
2
3.
8
3
[=]
<
-
1
z
2
-
)
3
‘\: L4 L _ T
'6.00 2.00 .00 6.00 .00 10.00 12.00 14.00  16.00  18.00
XSCALE= 2.00 UNITS/INCH * RUN NO. 1
YSCALE= 0.20 UNITS/INCH PLOT NO. 1
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A(t) = (‘5—]“-‘{—’i) n(t) + xre(t) (150)

et) = Gny - rend (151)
where

§k(t) = Ske(t)-an(t) (152)

The variable §k(t) is the input to the process and is given
the name "reactivity'". It is clear by inspection that
§k(t)<B for stable system (in a linear sense). The
variable c(t) is a measure of the concentration of fragments
(precursors) that produce delayed neutrons according to a
time delay (1/X) called the "half-life" of the precursor.
The input, § ke(t), is the control (reactivity) that is
associated with the control rod position and, a, is a
temperature feedback (reactivity) coefficient.
The parameters for this system are:

o = 107° kwl

= 1073 sec.

0.0065

1
8
A 1

0.1 sec.

at t=0 n(0)=10kw (as the operating output in steady
state conditions)
The control problem is stated as:
Find the Optimal Control Policy u*(t) that will

transfer the power level n(t) from the operating level
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v

—

3]
)

& 4

1

n(0) = 10kw to a new level n(t) = 50 kw where
u(ty = § ke(t) (153)

using the performance measure given in equation ( 97 ) where

1008 o o
Q ={0 0 0 _
0 0 25 (154)

and compare this solution to the near optimal one obtained
from the reduced order model.
From the state of the problem the following diagram

is drawn

TEMPERAT.
FEEDBACK -

+ ]~
n(t) 4J%
Ske(t) - NUCLEAR (_
f ' O— KINETICS

(t)

(t)
u*(t) X3
xz(t)

-K - xlT"Ej

_‘

Figure 20, Block Diagram Optimal Control of a Nuclear
Reactor.
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new definition of state variables

x1(t) = n(t) - Neg
x2(t) = c(t) - Cqg
x3(t) = dSke(t) - dkcSs
The steady state conditions are
n(t) = 0
c(t) = 0
§k(t) = 0
The initial conditions at n(t) =

v . B .
i c(t) = x n(t) - c(t)
‘ - 3
3' C(O) = ﬁ- n(O)
3 . c(0) = 640
V.
x' 2(0) = c{(0) -
s X = c Css
\
! q x2(0) = =2560
. - c(t)
; Sk(t) = an(t) - Al m + 8
.\.
3 = an(0) - a1 4O

- §k(0)

The double subscript, ss, means steady state and the

are:

(155)

(156)

- (157)

(158)

(159)
(160)

50kw are:
from the state variables definitions, equations (155),

(156) and (157) and equations (150), (151) and (152).

(161)

(162)

(163)

(164)

(165)

(166)

(167)




D R voR, —e .
’r" c- J'_.'“"-'-1,'“"'“FT!!E!E!Eann....---—-—-—-n

{
!
. <4
§k(0) = 10 (168)
Css
Skss = dnss - Al o + 8 (169)
ss
. -4
akss = 5%10 (170)
x3(0) = 8§ k(Q) - Skss _ (L71)
-y
x3(0) = -~4x10 (172)
x1(0) = n(O)-nss (173)
x1(0) = -uQ (174)
' then
x1(0) -40
x(0) = x2(0) = -25690
x3(0)_z ~ux10™" (175)

and the optimal control law U%(t) will be

u*(t) = -Kx(t)

?j same as given in equation (398 ). The system in variable
{
?% form is given by equations (99 ) and (100). Since equations
Y
F . (150) through (157) are non-linear linearization is required
f
‘ (see appendix A). The linearized system is represented by
B
.
’

]
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|
!
i n
- - Tan__*8) A s 0
. 1 " ss 1
[ x(t)= B/1 =-A 0 x * 0 u
‘, 0 0 0 |1 176 )
y(t) = [1 0 0lx(t) (177
where _
Ir-s.e 0.1 5x10° |
A= |6.b4 -0.1 0 (178)
1
0 0 0 {
]
0
. B= |20
1 (179)
c = [1 0 0] (180)
Sclving the Ricatti equations, the matrix K is given by
. equation (181).
_ -y -6
. K = [2.5x10 8x10 7.05] (181)
|
)
v The transfer function for the optimal system will be:
!
] _ 5x10°(S+0.1)
S"+14,0557+61.9S+4.16 (182)
¢
‘s
7
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i The Routh's array for this system is:

4.16 61.9 14.05 1.0

5000 50000 0.0

£0.3 I5.05 T.0|

46539 -246.3

- I&.1I57 1.0]
-3533.58
T. 0|
From the Routh's array

[20.3 14.05 1.0

P= 0.0 14.157 l1.0

' 0.0 0.0 1.0 (183)
[0.049  -0.048  -0.000%
P~ = Jo.0 0.07 -0.07

i 0.0 0.0 1.0 (184)

N and the rectangular partition of P and p~1 matrices give

\

) — t

o 20.3 14,05 1.0 :

LN € = ‘

, 0.0 14.157 1.0 (185)

f

[0.049  -0.048

N e = |0.0 0.07

e

0.0 0.0 (186 )

v

4
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and from equations (125) and (126) the reduced second order

suboptimal system will be

: ~0.205  -2.735 1 |
zr(t) zr(t) + u(t) 1

~0.205 -4.169 1]
(187)
y(t) = [2u46.305 3287.5])zr(t) (188)
The corresponding transfer function is given in equation
(189 ).
Hr‘op(s)=3233'588+353'17
S®+4.3738S+0.294 (189)
In Figure 21 is shown the step response for the original *

optimal and reduced suboptimal system.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Comparative analysis of Cauer forms methodology for

multivariable system reduction is established. The developed

methodology is based on the Cauer matrix generalized form,
which offers the closest approximation to the original

system. The proposed methodology and because of the nature

of the Cauer mixed form shows it to be superior to any other

method proposed to date since it provides satisfactory
results for both the transient and the steady state portion
of the system response. The methodologies in state space
as well as in the S domain are developed. For the basis

of comparison, reduced order models using the three Cauers
forms are obtained for two different examples. The results
clearly show the superiority of the Cauer mixed form over
the entire frequency range of system's response. The
proposed methodology is algorithmic therefore, it is
amenable to digital computation.

A lower order optimal linear regulator can be obtained
by mere translation of the original system to Cauer second
form and their partition of the different matrices as shown
in Section III-B. A suboptimal feedback matrix for the
original system can be obtained by multiplication of the

lower feedback optimal matrix by the rectangular partition

86
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of the matrix P. The responses of both systems, the original

and the reduced, as well as optimal and sub-optimal systems
are extremely close.

The results presented here are encouraging, there is
a distinct need for future research, in particular in the
reduction of systems with any given number of inputs or

outputs.

——
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APPENDIX A

Linearization of Multivariable Systems

Let equations (A-1) and (A-2) be the state variable

modeling

F(x,u) (A-1)

We
#

g(x,u) (A-2)

<
]

For the system described by equations (A-1) and (A-2) is

operating at steady state conditions(constant input u__,

SS

producing constant state Xog and constant output yss)' The

.‘ combination of these produces
0 = f(xs s u__) (A-3)

If the system is perturbed by either drawing the states or ]

—-—

} the inputs, the system motion satisfies

’f 6% = F(x  #¥x, u__ +u) (a-5)

yssﬁSy = g(xSSﬂSx, ussﬁ u) (A-6)

Both functions, F and g can be expanded in a Taylor series

about the points (xss, uSS) resulting in the following

representation of the system equations.
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X + 6k=P(xss, uss)+A6x+86u+a(6x,5u)

ss (A-7)

ySS+6y=g(xss, uss)+C5x+DS u+B (§ x,8 u) (A8)

where:

= nxn matrix

A

B = nxm matrix
C = vxn matrix
D

= vxm matrix

n = order of the system, m = number on inputs, v=number of
outputs.

The functions a(dx,du) and 8 (§ x,8u) represents all
second order and higher terms in the Taylor series expansion.
Substitution of equations (A-1) and (A-2) evaluated at
(x_ _, u

ss S
terms, yields the following perturbed equations of motion

s) and neglecting second order terms and higher

8% ASx + BSu (A-3)

Bx + DSu (A-10)

Sy

The two equations above approximate the dynamic behavior

of the system about the operating point (xss’ uss)' The

elements of the motion A, B, C and D are given by
§ xi

Aij E -}(_j- i = 1,2...1’1 j = l,2...n

Oni
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Dij

The representation of equations (A-9) and (A-10) is given

by the following block diagram.

N

Figure A-1. Block Diagram of a Linear Model.
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